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1. INTRODUCTION

This effort’s over-arching goal is to study, to model, and to apply predictive markers (indicative 
behaviors) during training, focusing on application of the markers when the learner makes 
observable decisions (pivotal opportunities). We are investigating the activity patterns that 
learners exhibit while interacting within learning scenarios. Activity patterns include the timing 
of decisions, and observations of mouse movements, button clicks, and dwell patterns. Learning 
scenarios are situated in training for Emergency Medical Technicians and focus in particular on 
the cognitive, perceptual and affective knowledge and skill that is necessary for “sizing up” an 
accident or incident scene on first arrival. The effort has two specific aims: 1) Develop training 
scenarios that present pivotal opportunities and elicit indicative patterns of behavior from 
learners; 2) Develop computational models of indicative patterns. This report summarizes 
progress and accomplishment toward both aims. 

2. KEYWORDS

Computer-based learning, adaptive learning, behavioral patterns, emergency medical technician 
(EMT), mouse-tracking, behavioral indicators 

3. OVERALL PROJECT SUMMARY:

The statement of work for the effort is summarized in Table 1, including a short description of 
each major task. Note that Tasks 1 and 2 are focused on specific aim 1 (present pivotal 
opportunities and elicit indicative patterns) and Task 3 is focused on specific aim 2 (develop 
computational models of the patterns). In the following, we discuss Objectives, Results, Progress 
and Accomplishments for each task in the Statement of Work. 

Table 1. Project Statement of Work 

Task 1. Scenario Development 
This task is to develop and to validate training content and scenarios. Scenarios are implemented 
within the Adaptive Perceptual and Cognitive Training System (APACTS). Training scenarios 
are designed to include supportive, constructive guidance and feedback to present when the 
learner takes any given action—both for acceptable responses and for erroneous ones. Scenarios 
are focused on scene size-up for Emergency Medical Technicians. These scenarios involve 
healthcare content appropriate for an entry-level learner to become familiar with, with a variety of 
situations portrayed across the entire set of scenarios.  
Task 2. Study Design and Data Collection 
This task primary focus is to design a study to test the effectiveness of scenarios in identifying 
behavioral and error patterns in the learning environment and to then conduct the study, collecting 
and analyzing the resulting data. As an initial step in study design, this task includes an analytic 
study designed to estimate parameters important for the eventual study design such as the 
required accuracy of behavioral markers to support effective adaptation for learning based on 
indicative patterns. 
Task 3. Process Modeling 
This task is to create models of participant behaviors across the scenarios developed in Task 1. 
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The models compare acceptable behaviors (such as the correct answer to a direct question) and 
the indicative patterns that led to a chosen answer (such as the mouse movements and dwell times 
associated with the choice). The models are also developed to be integrated estimates of 
proficiency and checks on learning (such as explicit questions). At each pivotal opportunity, 
where a participant is to make a decision in the scenario, we will extend APACTS to record the 
participant’s actions along with the time, and form an assessment against one or more learning 
objectives. The resulting history of estimates over performance in the scenario can provide 
insights into the specific progress of learning. 
 
Task 1: Scenario Development 
 
Objectives and Results 
1. Identify sources of training materials. 

o This objective is met. We are focusing on the emergency medical technician 
(EMT) domain, which offers a standardized curriculum on which we can create 
training scenarios. 

2. Develop instructional design for the scenarios. 
o This objective is met. We have developed both a complete instructional design 

and a basic instructional template for each training scenario. 
3. Assess and validate the instructional design. 

o This objective is met. The standardized, national curriculum has been previously 
validated and our scenarios hew closely in content with the standard curriculum. 
We also are engaging subject matter experts in the EMT domain to review 
specific content presentations, focusing especially on images.  

4. Implement the instructional design in APACTS. 
o This objective is underway. We have implemented a few full scenarios to enable 

testing and expect to complete development of all scenarios (covering the entire 
instructional design) in October 2017. 

5. Encode domain meta-data (learning objectives, expected error types, etc.) in APACTS 
scenarios 

o This objective is underway. We have extended the APACTS learning 
environment to support the requirements for responding to behavioral patterns and 
encoded the learning objectives from the standard curriculum into the APACTS 
scenarios. 

 
Progress and Accomplishments with Discussion 
 
After search and evaluation of potential options for content, we decided to focus on Emergency 
Medical Technician (EMT) training and, in particular, one unit within that training. EMT 
training has several advantages for the effort: 1) curriculum requirements are standardized (1), 
which essentially places some bounds on the role of instructional design within content design; 
2) many organizations offer EMT courses and there are many resources on the web about EMT 
training, which has alleviated some of content-generation constraints and the need for specialized 
expertise (i.e., in comparison to combat medics) for creation and validation; and 3) EMT 
programs (including the subset we have chosen) require development of cognitive, perceptual, 
and psychomotor skill. In the study, we will be focusing on the first two of these, but having 
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more than one type of skill that needs to be developed should help demonstrate the value of 
behavioral markers for differentiating learning needs. 
 
We chose to focus on the “Scene Size-up” component within the EMT course. The 
recommended time for this lesson is 1 hour. Within this lesson there are cognitive, affective, and 
psychomotor learning goals and the goals include not gaining knowledge but being able to 
demonstrate and apply that knowledge during the course of the lesson. The relatively short 
duration of the lesson with a relatively wide variety of learning objectives and types of 
objectives, makes it a reasonable choice for testing the development of markers, because 
adaptive choices can potentially focus on choosing alternatives among these categories rather 
than fine-grained distinctions within a few learning objectives. 
 
The instructional design for the study includes the following units: 

• Introduction (What is scene size up?) 
• Key Concepts (Introduce terms such as mechanism of injury (MOI)) 
• Identifying Hazards (general introduction) 
• Assessing the complexity of the scene (Can you handle this situation?) 
• Vehicle Injuries (general intro) 
• Mechanisms of Injury: Front-end collision 
• Mechanisms of Injury: Side-impact collision 
• Mechanism of Injury: Rear-end collision 

For each unit, we have developed an overall template, the structure of which is summarized in 
Figure 1. Each unit includes some number of introductory “frames” (comparable to a briefing 
slide) that introduces the topic, terms, and provides examples and explanations. The learner is 
then presented with a series of vignettes that require a decision/choices. These are the pivotal 
opportunities in the instructional presentation. What the learner views next is dependent on the 
choice the learner makes. There are generally five distinct choices:  

• Move on to the next item (which could more another pivotal opportunity or new content) 
• Reconsider your answer / repeat  
• Remediate current topic: Feedback is provided that is focused on the current topic and 

relatively fine-grained distinctions about the topic. 
• Remediated contrasting learning objectives: Feedback is provided that discusses 

differences between the current topic and/or learning objective (e.g., evaluating potential 
mechanisms of injury between side-impact and rear-end collisions) 

• Remediate concepts: Feedback is provided that focuses on high-level conceptual 
distinctions, such as the difference between a mechanism of injury (the physical forces 
that can result in patterns of injury) and the injury itself. 

 
For this effort, these choices are not hard-wired to specific learner responses. Instead, the system 
uses the computational models of behavioral patterns (discussed further under Task 3) to 
evaluate which content option is most apt for the current situation. The decision context thus 
includes the learner’s decision/response, the current estimates of skill for the learning objectives 
relevant to the decision, and the behavioral markers.  
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Figure 1. The basic structure of APACTS EMT Scenarios in support of the study. 

 
 
Examples of implemented scenarios are included in Appendix B, the IRB protocol for the 
primary study. 
 
Task 2: Study Design and Data Collection 
 
Objectives and Results 
 
1. Design and conduct an analytic (verification) study to inform the design of a human-subjects 

(validation) study. 
o This objective is met. The verification study is summarized in (2), which is 

attached as Appendix A. This analysis enabled us to estimate learning impacts 
across a large space of learning design alternatives. The results of this analysis 
lead to us to understand that the study required a larger number of content options 
for each pivotal opportunity and that the study would require a larger number of 
subjects (about 100) than the original, notional plan (about 50 subjects). The  

2. Design a human-subjects study with the goal of investigating the impact of behavioral 
markers in an adaptive learning environment. 
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o This objective is met.  The protocol for the human-subjects validation study is 
included in this report as Appendix B. 

3. Prepare formal documentation for the study, submit to Institutional Review Board, and obtain 
approvals from IRB and Army HRPO to conduct the study. 

o This objective is partially met. The study protocol documented in Appendix B 
received IRB approval on 21 Jul 2017. The protocol has been submitted to HRPO 
and is currently under their review.  

4. Conduct the study (including subject recruitment, data collection, etc.). 
o This objective is not yet met. Assuming HRPO reviews are complete, we plan to 

conduct the primary data collection for the study in Oct-Dec. We have requested a 
contract modification to enable primary data collection at the University of 
Alabama but the approved IRB allows collection both at Soar Technology’s 
Florida office and the University of Alabama. 

5. Perform data analysis on collected data and summarize overall results and recommendations. 
o Work toward this objective has not yet begun. We plan to conduct summary data 

analysis Jan and Feb of 2018. 
 
Progress and Accomplishments with Discussion 
 
The goal of the verification-study design was to establish reasonable bounds on potential 
learning benefits for indicators in an adaptive training context. The study builds on prior work 
establishing the use of verification methodologies for the preliminary evaluation of adaptive 
training systems (3, 4).  
 
The study employed a simulated students paradigm (5-9) to assess theoretical benefits of more 
targeted assessment via indicative patterns. A secondary goal of the verification study was to 
identify an appropriate region(s) along a learning curve for human studies. For example, it may 
be useful to focus more on intermediate or advanced learners to see a large difference in 
outcomes than novice learners. These kinds of issues reflect why waiting to design the human 
subjects study until after the verification study is completed is preferable. The primary results of 
the study are: 

• Behavioral markers must be highly accurate to facilitate observable impacts on learning 
given basic constraints on the study design. The outcomes led us to focus optimizing 
mouse-tracking before investigating other sources of behavioral markers, as mouse-
tracking has been shown to be fairly reliable in many realistic usage contexts (10). 

• A relatively large number of alternatives are needed at each pivotal opportunity to effect 
observable changes in learning outcomes. The content design takes this factor into 
account in two distinct ways: 

(1) We increased the number of content alternatives available at each pivotal 
opportunity. This change requires more investment in content, but the study 
showed that having just a few choices at each opportunity was not sufficient for 
discrimination across the number of pivotal opportunities a learner could 
complete in 60-90m of learning experience. 

(2) We designed each pivotal opportunity so that the learner faces choices that 
correspond to a small number of learning objectives (2 or 3) rather than any 
learning objective in the curriculum. This approach imposes more constraint on 
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content development, but ensures that the resulting feedback is targeted to the 
learner’s misconceptions when incorrect or suboptimal choices are made. 

• Behavioral markers will have greater impact and discrimination for novice learners. 
Given study constraints, the impacts of behavioral markers will be more much evident 
(discriminable from the resulting data) if the learner’s are not already knowledgable of 
the domain. This result led us to focus on a more general target population for the study 
(college students) than a population already familiar medical procedures like medical or 
nursing students. 

 
A more complete summary of the verification study is included in Appendix A.  
 
Based on the verification study, we designed the human subjects study and documented a 
protocol for that study. The research compares the results of learning between an adaptive 
medical learning unit to a unit presented in a non-adaptive (fixed) sequence. As above, the 
curriculum units focus on “Scene Size Up,” a required curriculum component used in Emergency 
Medical Technician (EMT) training (1). These units (both adaptive and non-adaptive) will be 
presented to university subject population(s) in order to assess the utility of markers to improve 
adaptive learning in emergency medical environments.  
The following variables of interest will be implemented and observed in the study: 

• Instructional approach: The overall instructional approach of the learning environment. 
For this study, there are distinct instructional approaches:  

o Non-adaptive/traditional: An instructional unit that is presented in a fixed 
sequence to all learners. 

o Adaptive based on performance (only): An instructional unit in which specific 
content presentations are constructed/chosen based on learner performance and 
subsequent estimates of learner knowledge and skill.  

o Adaptive based on performance and markers: An instructional unit that is 
dynamically constructed/chosen based on a combination of direct learner 
observation (as above) and behavior markers.  

• Markers: Patterns of observed behavior that are hypothesized to have a role in 
improving a learner model. 

• Knowledge gain: A measure of the post-test performance of subjects, relative to pre-test 
performance. 

This study is implemented as a between-subjects design, with "instructional approach" being the 
independent variable of interest. Instructional approach will be manipulated at three levels (as 
discussed above): non-adaptive, adaptive based on performance (only) and adaptive based on 
performance and markers. 
 
The primary dependent variable is "knowledge gain", as measured by difference scores between 
pre- and post-tests given to participants. Additionally, behavioral markers derived from dynamic 
tracking of mouse movements, will be used to predict learner needs and adapt the learning 
environment. The combination of these variables will enable the study to address the primary 
hypotheses, as well as quantify the utility of the chosen adaptive learning models for improving 
learning in medical environments. The complete study protocol is included as Appendix B. 
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Task 3: Process Modeling 
 
Objectives and Results 
1. Assess modeling options and develop a framework of indicators. 

o This objective is met. We evaluated options and identified mouse tracking as the 
behavioral indicator of highest priority given study constraints. 

2. Define an algorithmic approach for assigning meaning to behavior indicators in the context 
of the learning environment and interactions among learning objectives. 

o This objective is met. Building from general frameworks for characterizing 
learning and misconceptions (e.g., Mind Bugs) and previous work reifying 
learning concepts in a practical software implementation, we created a method for 
assigning meaning/interpretation to patterns of mouse movements and mouse 
behaviors. 

3. Develop models for mouse tracking (primary modeling option). 
o This objective is met. Drawing from the results from the previous two objectives, 

we have implemented, tested, and verified computational models that perform the 
interpretation of mouse tracking, recognizing learner patterns and assigning them 
an interpretation in the context of the current learning situation. 

4. Integrate the models in the APACTS learning environment. 
o This objective is met. The models developed under the previous objective have 

been integrated within the APACTS software for use in APACTS learning 
environments. This integration included software testing and verification of 
software functionality of the models within units of learning content. 

5. Refine and extend models. 
o Work toward this objective has not yet begun. We await HRPO review to begin 

learner assessment. Actual assessment of learners will enable us to identify 
additional needs and limitations of the models, and to then extend and/or refine of 
the models based on initial observations and results. 

 
Progress and Accomplishments with Discussion 
 
We evaluated two existing approaches to behavior and error classification: Van Lehn’s learner-
behavior classification scheme (11) and Rasmussen’s Skills, Rules and Knowledge (12). After 
evaluation of each of these methods and reference to them in the design of the verification study, 
we determined to use Van Lehn’s Mind Bugs taxonomy for classification of errors. This 
taxonomy is more comprehensive than SRK and while it is also more descriptive than SRK (i.e., 
rather than generative), we did not identify any major stumbling blocks in encoding recognition 
rules from the taxonomy in the error recognition system. We have recently extended the 
framework to include the Knowledge-Learning-Instruction (KLI) (13) and the Interactive, 
Constructive, Active, and Passive (ICAP)  (14) frameworks. These frameworks take a more 
current and comprehensive view of learners and learning environments and have facilitated 
making more fine-grained distinctions in assessment and task contexts for modeling learner 
behaviors and errors. 
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For encoding recognizers or “markers” in 
the learning environment, we have 
developed models that build on a prior 
constraint-based behavior modeling system 
(15) to encode non-symbolic behavior 
patterns. We are focusing primarily on 
mouse movements and mousing behavior 
generally as an indicator of both cognitive 
and affective state. Patterns of mouse 
movements have reasonable correlation 
with a learner’s affective state (16) and 
multiple studies suggest that learner mouse 
movements can be effective in identifying 
learner cognitive state (17-19).  
 
Figure 2 summarizes the mouse tracking 
algorithms, which perform the first step in 
the recognition process. The learner has 
been asked to “annotate” the image in the 
APACTS frame, identifying any objects in 
the image that is a “hazard” as defined in 
the EMT curriculum. Positional information 
is captured, along with the velocity and 
acceleration of the mouse movement and 
mouse clicks (represented in the diagrams 
by the vertical, dashed lines). The velocity 
and acceleration graphs include examples of 
both raw (blue) and filtered (green) data. 
The filters help reduce some of the noise 
due to inadvertent mouse movements and 
mouse jitter.  
 
The positions of key objects in the scene are 
labeled as meta-data (part of Task 1; 
illustrated in Figure 3), enabling the mouse-
tracking algorithm to relate mouse actions 
to learner activity. For example, in the first 
and second mouse click events (2nd and 3rd 
vertical lines in the figures), these areas are 
associated with the bystanders/potential 
patients in front of the cars. Although the 
behaviors appear quite different (compare 
the two velocity spikes), these are readily 
classified as comparable outcomes in the 
learning environment via the use of the 
labeled areas in the content illustrations. 

 
(a) tracking learner mouse movements  

 
(b) (x,y) position of movement  

 
(c) velocity of mouse movement during tracking 

 
(d) acceleration of mouse movement  

 
Figure 2. Basic steps in tracking mouse 

movement. 
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By application of Fitt’s Law and the filtered data, the tracking algorithms can be used to estimate 
the confidence of an individual decision. For example, in the latter part of the scenario, the 
mouse tracks to a few locations but the user does not make a mouse click. By comparison of 
velocities and accelerations of these different movement patterns, the algorithm attempts to 
assess the confidence of the learner’s decision.  
 

Figure 3. Translating Mouse Movement into Learner Assessment. 

 
 
Figure 3 summarizes the information flow that results in these assessments. Following the low-
level tracking illustrated in Figure 2 (summarized in the “track mouse movement” component in 
the figure above), the capture movements are mapped to task interpretations, such as moving to a 
labeled object (“track to box”), dwelling on a box, and a normalized traversal time. The mouse 
tracking feeds the primary model (blue component), which focuses on the interpretation and 
evaluation of the learner’s choices. In this example, the model is indicating which of the labeled 
areas were evaluated by the learner, which of those boxes the learner actually chose, and which 
boxes the learner did not appear to evaluate based on mouse movements.  
 
These evaluations then feed to the content selection algorithm in APACTS, which determines 
what content the learner sees next. In the situation shown, the learner’s proficiency estimate for 
relevant learning objectives is low and the mouse tracking lets the system understand that the 



 

13 

learner did not even appear to evaluate hazards in the image. The lack of evaluation results in a 
bias toward one of the remediation options.  
 

Figure 4. Markers enable alternative tailoring choices for the same answer. 

 
 
Figure 4 illustrates an example of the way the model impacts the final content selection decision 
by the APACTS system. In this multiple-choice question example, the learner is asked to classify 
the mechanism of injury (MOI). The evaluations of the mouse movements can lead to different 
responses for the same question. For example, if the learner spends a lot time evaluating all of 
the options (including item (b), which is a different category of response than the others), the 
system will choose to remediate MOIs vs. injuries even though the learner’s eventual response 
was the correct choice. The examples in the figure highlight the overall potential value of the 
markers and models; they provide additional context for interpreting learner activity and tailoring 
the presentation of content to the learner. 

 
4. KEY RESEARCH ACCOMPLISHMENTS 
 

• Completed verification study, which provided critical insights for designing a human 
subjects study (Task 1) 

• Completed study design (and associated documentation) (Task 2) 
• Researched and developed computational models that interpret behavioral patterns and 

translate those patterns into more fine-grained learner assessments than just the 
observation of the learner decision provides (Task 3). 

 
5. CONCLUSION 
 
Personalized learning, in which a learning environment adapts to the abilities, needs, and 
preferences of individual learners, has been identified as a "Grand Challenge" for 21st century 
research and engineering (20). The benefits of adaptive learning environments include more 
efficient learning (21), improved attention and motivation (22), the development of less rigid 
and more flexible decision making (23), and improved transfer of learning to settings in which 
learned knowledge is used and applied (24-26).  
 
Improved and personalized learning has particular application for more pervasive and less 
costly medical training, which often is delivered primarily by human instructors in classes 
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with modest student-to-teacher ratios. Human instruction and mentoring is very valuable and 
desirable, but adaptive personalization methods offer an opportunity to deliver good, effective 
introductory and basic training, thus potentially enabling a single human instructor to train 
many more students by better preparing them for coaching and instruction from experts. 
 
Adaptation to a learner usually requires a model of the learner that is frequently updated as a 
learner progresses through a curriculum. Creating a complete and accurate learner model is 
difficult, however. Markers are designed to improve learner modeling. The model of the learner 
is frequently updated as a learner progresses through a curriculum (27). The targeting of adaptive 
techniques, such as scaffolding (28) and competency matching (29, 30) depends on the accuracy 
(and, to some degree, precision) of the learner model. When the model better reflects the 
learner's actual knowledge, skills, and attitudes at any point during the learning, the targeting of 
the adaptive method to the learner generally improves (29). Creating a complete and accurate 
learner model is difficult, however. In addition to estimating learner capability from formal and 
informal assessment within the environment (31-34), researchers have explored many 
behavioral, physiological, and even neurological indicators or "markers" that can provide 
additional context for estimating a learner's cognitive state and improving the dynamic 
assessment of the learner. 
 
Behavioral sensors (posture, eye trackers), physiological sensors (Galvanic skin response), and 
neurological sensors (EEG) have all been used to assess and track learner arousal/attention in 
learning environments (35). These sensors provide details information but at the cost of 
introducing uncommon and costly new hardware requirements for the learning environment. 
However, there is significant and growing scientific evidence that the temporal patterns of mouse 
movements during selection tasks can provide reliable insight into the cognitive state of subjects 
(17, 18). Mouse-based markers may be noisier (less diagnostically precise) than neuro-cognitive 
markers associated with specialized sensors but they are omnipresent on standard computer 
workstations where actual learning environments are deployed. Thus, this study focuses on 
evaluating the impact of the behavioral markers on the adaptive learning system to improve 
learning outcomes, taking into account the noise and uncertainty of measure inherent in 
unspecialized sources. 
 
Our focus commonplace hardware to make behavioral observations, such as a computer mouse, 
distinguishes this effort from work that uses more specialized sensors to recognize indicative 
patterns. The study we will be executing over the remainder of the effort will provide insights 
into the potential benefits (and limitations) of using behavioral patterns derived from everyday 
and pervasive hardware to improve learning outcomes for medical training. We expect these 
results to provide evidence of the value of capturing and encoding models of these patterns, and 
thus providing a foundation for on-going and new learning applications that use models of 
behavioral patterns to improve learner assessment and targeted of learning content based on 
those improved assessments. 
 
6. PUBLICATIONS, ABSTRACTS, AND PRESENTATIONS: 

a. Manuscripts submitted for publication during the period covered by this report 
resulting from this project: 
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Wray, R. E., & Stowers, K. (2017). Interactions between Learner Assessment 
and Content Requirements: A Verification Approach. Proceedings of the 8th 
International Conference on Applied Human Factors and Ergonomics (AHFE 
2017) and the Affiliated Conferences, AHFE 2017, Los Angeles. 

 
b. List presentations made during the last year (international, national, local societies, 

military meetings, etc.).  
 

The peer-reviewed conference publication was presented at the 8th 
International Conference on Applied Human Factors and Ergonomics (AHFE 
2017) and the Affiliated Conferences in Jul 2017. 

 
 

7. INVENTIONS, PATENTS AND LICENSES 
Nothing to report. 
 
8. REPORTABLE OUTCOMES 
 
The Adaptive Perceptual and Cognitive Training System (APACTS) tool being used on the 
effort is being used by other projects and groups within Soar Technology for learning sciences 
research and the development of adaptive training applications. The computational process 
models (described in Task 3) have been integrated with APACTS are expected to be used in 
future applications of this software to training applications. 

 
9. OTHER ACHIEVEMENTS 
Nothing to report. 
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Abstract. A practical constraint in the design and development of algorithms 
and tools for personalized learning is the need to implement adaptive algo-
rithms, oftentimes within complex software environments, without the benefit 
of a priori large-scale user testing. The lack of such testing makes it difficult to 
ensure that lessons and guidance from design recommendations and prior stud-
ies in other domains has been effectively applied in the training application. 
This paper summarizes efforts toward a testbed to support verification of adap-
tive training designs. The testbed operationalizes evidence-based guidance from 
the research literature and simulated students to enable exploration of design 
space prior to large-scale implementation. The paper motivates the approach 
with a specific design question, which is to examine trade-offs between the use 
of behavioral markers to assess proficiency and the resulting training-content 
requirements to take advantage of the information that such markers provide. 
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1 Introduction 

A practical constraint in the design and development of algorithms and tools for per-
sonalized learning is the need to design, implement and integrate adaptive algorithms, 
oftentimes within complex software environments, without the benefit of a priori 
large-scale user testing. User testing can provide evidence of what adaptive methods 
are more (and less) beneficial within a particular training setting. The most beneficial, 
specific methods will usually not be fully known in advance; many potential design 
options may be apt. Knowledge of the research literature and results can be helpful, 
but best practices for the design of adaptive training in most training contexts is ever-
evolving [1, 2].  

This constraint is particularly acute in complex training environments, such as 
those used in distributed simulation and virtual training. The complexity of software 
integration and limited access to physical devices can result in commitment to a de-
sign that turns out to not offer many training benefits. Similarly, a chosen approach 
may offer a significant improvement in learning effectiveness but the target popula-
tion cannot realize those benefits because their incoming knowledge and skill is not 
matched to those benefits provided by the system.  



When an algorithm or approach turns out to be poorly chosen, it may take several 
years to develop and implement an alternative approach. This delay has both immedi-
ate and longer-term impacts. The immediate cost is the lack of improvements in train-
ing that were anticipated by the training developers. A longer-term, more systemic 
cost is that these failures in execution can impose greater resistance and new barriers 
for the adoption of adaptive training generally, resulting in the perception that adap-
tive training methods are not sufficiently mature to deliver the learning benefits that 
have been observed in more controlled (and, oftentimes, contained) settings. 

As researchers interested in developing and fielding effective adaptive training so-
lutions, we have for several years been developing a methodology that employs simu-
lated students and software verification methods to attempt to understand the potential 
benefits of adaptive algorithms and the requirements they impose on students and 
instructors prior to full-scale development [3-5]. We introduce a testbed we are devel-
oping to enable exploration of design choices and, to illustrate how the testbed can 
inform specific design 
choices, summarize a verifi-
cation study conducted using 
the methodology. This study 
reflects the long-term goal to 
develop methodology and 
tools that will help designers 
understand what (adaptive) 
features are appropri-
ate/needed for their training 
needs and to estimate the 
costs/benefits of different 
design options. 

2 Testbed for Training Design 

Below we briefly introduce the elements of the verification testbed we are develop-
ing. The goal of the testbed is to provide a computational tool, with parameters con-
nected to the research literature, that allows a training designer to evaluate assump-
tions about a design. Fig. 1 illustrates the major components of the testbed and their 
relationships to one another.  

Testbed components are: 
1. Adaptive algorithms: The testbed typically uses the implementation of adap-

tive algorithms that would be used in the actual training environment. From a 
software engineering perspective, this approach allows evaluation and test (or 
verification) of the adaptive solutions within the testbed. 

2. Learning-system architecture: The learning-system architecture defines how 
training content will be delivered and the role of adaptive algorithms within the 
learning environment. We are developing a family of these models for use in the 

 
Fig. 1. Conceptual Architecture of Verification 

Testbed. 



testbed. The next section introduces the specific model we are using for this 
analysis (see Fig. 2). 

3. Training content: The testbed draws on a content repository to deliver training 
content within the testbed. In some cases, this training content may be the actual 
content that is to be used in the training application (especially apt when adding 
adaptive capabilities to an existing training application). In other cases, especial-
ly for a new training system being designed, the training content may be simu-
lated.  

4. Simulated students: The testbed employs simulations or models of students to 
interact with the training content. The use of simulated students to support train-
ing design is becoming more commonplace; some researchers have identified 
methods to synthesize functional students based on task analyses, cognitive ar-
chitectures, and machine learning [6, 7]. Analytic tools, such as power law 
equations, are often also used for modeling learning [8, 9]. The primary re-
quirement for a simulated student is that it provide a response to a learning situ-
ation at an appropriate level of abstraction for the simulation of the learning en-
vironment. 

5. Population Model: The population model varies parameters for individual sim-
ulated students as they are instantiated. Having a distinct population model (ra-
ther than a defined population of simulated students) allows the user of the 
testbed to explore potential interactions between population assumptions (stu-
dents with generally high/low self-efficacy; students generally well-prepared or 
poorly prepared for the content to be delivered). 

Long-term, we envision a flexible and composable software environment that 
would allow designers to model potential learning designs and evaluate them in a 
decision analysis aid. Today, we are creating instances of the components illustrated 
in Fig. 1 to address specific design questions, as discussed next. 

3 Motivating Example 

As described above, the study 
we present uses a simulated 
students paradigm and a simu-
lation of the learning environ-
ment to provide quantitative 
estimates for functional system 
requirements. The benefit of 
this approach is that specific 
learning benefits and the effects 
of adaptation can be evaluated, 
at least tentatively, in advance 
of full-scale implementation. 
Here we discuss the learning environment being simulated, along with the specific 
domain we pull learning content from. 

Computer-based training (CBT) is actively used across many contexts, including 
military, medical, and educational. CBTs commonly include didactic instruction (text 

 
Fig. 2. Model of the learning environment. 



and images, audio, and video), opportunities for relatively simple practice, and peri-
odic checks of knowledge. Most CBTs assume a fixed sequence of lessons and may 
require a student who fails a knowledge check to repeat a lesson. Implementing adap-
tive training in such a context may yield many benefits, most notably the benefit of 
accelerating or decelerating the pace at which students move forward in the lesson 
according to how quickly they are learning, including improved engagement. Adap-
tive techniques used in CBTs include variable starting points [10], enabling more/less 
practice [11], hinting and coaching [12, 13], and personalization of content delivery 
[14, 15]. 

We are designing and evaluating the role of adaptation in a CBT for Emergency 
Medical Technician (EMT) certification. EMT courses are offered across the United 
States, with various states enforcing slightly different requirements. Curriculum is 
standardized at the US federal level through the National Highway Traffic Safety 
Administration [16]. This makes EMT training both accessible and applicable. Addi-
tionally, EMT certification is a domain of training that can be applied in both national 
and international civilian and military contexts, making it a highly valuable area for 
the training improvement. Adaptive training may help streamline the EMT certifica-
tion process by accommodating learners who may need more or less practice to meet 
national standards. 

For the specific analysis of this paper, we examine a specific lesson in the standard 
curriculum for EMT training—scene size-up. Scene size-up involves steps taken by 
an EMT crew when arriving on the scene of an emergency. According to the standard 
curriculum, in order to develop training within this context, it is necessary to consider 
what a “scene size-up” timeline looks like, and cognitive, affective, and psychomotor 
objectives are for this task (see table 1). The standard curriculum specifies 9 distinct 
learning objectives across these three different types of learning objectives.  

It would be useful in designing the training environment to have insights and 
quantitative estimates for the following three questions: 

1. What is the potential size of the learning gain that would be introduced by 
the use of adaptive methods? This question sets expectations for the design 
and helps the designer to understand the relative benefit of adaptive training 
in the context of the impacts of the full system. 

2. How much unique content is needed to realize the ideal (or at least compel-
ling) learning gains? Tailoring to the learner typically requires specialized 
content. If we assume that it is not possible to automate content creation (the 
typical case), then it would be beneficial to estimate the minimum content 
needed to realize a (meaningful) gain from adaptive tailoring. 

3. How accurate do assessment measures need to be to realize (compelling) 
learning gains? In order to make adaptive choices, some measurement of the 
state of the learner during the learning process is typically needed? How ac-
curate do measures need to be to realize the hypothesized gains from adap-
tive tailoring? 

 
 



Table 1. Key parameters for the marker/content verification analysis.  

Parameter Description Study 
Value(s) 

Citations 

Base  
Learning 
Rate 

The learning rate term in a 
standard power law learning 
curve (α) 

.5 
 

The specific α value is in the 
range of common values in learn-
ing models [8, 9] 

Learning  
Objectives  
Types 

Distinct categories of learn-
ing objectives. 

3 Cognitive, Affective, Psychomo-
tor from Standard EMT Curricu-
lum [16]. 

Number of  
Learning  
Objectives 

Objectives that must be met 
according to the topic and 
tasks being learned to com-
plete a scene size-up. 

9 9 distinct learning objectives are 
identified in the standard curricu-
lum [16] 

Z Score A normalized (-1..1) rela-
tive match between learner 
capability and material 
being presented.  

See text This Z-score is an operationaliza-
tion of the ZPD and is informed 
by [18] but is adapted to the 
anticipated training context. 

Delta 
Learning 
rate  
 

Modification of base learn-
ing rate with the assumption 
that high z-score improves 
learning rate and low z-
score diminishes learning 
rate. 

 +/- 25% This range is comparable to 
learning gains observed in a 
similar domain with tailored 
content matching [15]. 

Measure 
Accuracy  

The general accuracy of 
measures used to estimate 
skill/proficiency.  

See text Direct measures can have high 
accuracy. Indirect measures, such 
as markers, often can exhibit poor 
precision and recall. 

4. Verification Methodology 

To attempt to answer these questions, we developed a simulation of the EMT learning 
environment within the testbed and developed specific tests to gather data. A sum-
mary of the implementation for each testbed component is summarized below. Table 
1 lists specific values for some of the primary parameters used in the study. Testbed 
components: 
1. Adaptive algorithms: This test focuses on a single adaptive algorithm, which 

chooses the lesson content that is closest to the estimated proficiency of the 
learner across all learning objectives. We are interested in the use of other adap-
tive algorithms, including hinting and coaching. However, in this study, we fo-
cus only on lesson selection. 

2. Learning-system architecture: Modeled as displayed in Fig. 2. We did not 
distinguish explicit assessment and marker-based measurement, although ex-
plicit assessment is generally more accurate than marker-based techniques. 

3. Training content: We generated several collections of lessons, which are pri-
marily characterized by the target learner profile for the lessons (but not all les-
sons touch on all learning objectives). The comparison standard for lessons was 



the “progressive” lesson design, which assumes an initial low student proficien-
cy vector and increases the values in the profile across all learning objectives as 
lessons progress. This choice is reasonable for most CBTs, although a part-task 
design would be a contrasting option for future study. 

4. Simulated students: In this design, students were simulated using a power law 
model. We employed a form of the power law model which computes the im-
pact of a lesson solely from the current lesson and prior learning [17]. This form 
of the power law allows us to estimate the effect of each individual lesson and 
not assume a heterogeneous distribution of lessons. For the study, each “lesson” 
was estimated to be about 4 minutes of instruction, resulting in 15 distinct les-
sons (and 14 opportunities for intervention) within the learning design. 

The effect of adaption on learning is estimated by assessing how closely a 
chosen lesson matches the learner’s proficiency profile. A Z(PD)-score is com-
puted as the average mismatch between the lesson (target profile) and stu-
dent/actual profile for all learning objectives addressed by the lesson. Normali-
zation is applied to the average error to bound to the range [-1...1], where a 1 
represents a perfect match and a -1 represents a (near-perfect) mismatch. How 
precise targeting needs to be is obviously of interest to the adaptive training 
community. We chose a conservative approach, assuming a functional relation-
ship in which the maximum Z-score rapidly decreases for relatively small tar-
geting errors. In other words, unless targeting is very good, its effect on learning 
rate will be small. 

5. Population Model: The primary population variable used in the study is the 
initial proficiency profile of students. An initial proficiency profile for each stu-
dent (100 students were generated per condition) was computed based on an ini-
tial bias (e.g., “very low”, “low”, “any”) and a sampling of the normal distribu-
tion across that bias. Again, this approach does not yet account for students who 
may be more differentially prepared for the training (e.g., very low for some 
learning objectives, but high for others). 

5 Results 

We generated testbed simulations focused on the three questions introduced above. 
This section discusses a collection of tests, undertaken in the testbed, to help shine 
light on each question. 

Fig. 3 summarizes one analysis of potential learning gains for Question 1. It illus-
trates hypothesized learning curves for two different populations. The “medium” ini-
tial proficiency populations (dotted lines) are assumed to have some prior 
knowledge/familiarity of the domain, resulting in an overall higher level of initial 
proficiency for the EMT Scene Size-up unit. For example, such students might al-
ready be able to recognize certain visual cues in a given scene such as broken glass or 
fuel spills and be familiar with relevant categorization terms (trauma victim) relative 
to scene size-up. The other population is assumed to have very low initial proficiency 
(dashed lines), meaning that they have little relative working knowledge of the EMT 
domain.  



The figure compares learning rates for a well-designed curriculum (purplish lines) 
to those obtained using targeted content selection (blue lines). In these examples, we 
assume tailoring to the learner is accurate and that content can be tailored to each 
learner (unlimited content options). These conditions provide a “best case” difference 
between a well designed CBT and an adaptive one. The results of the analysis suggest 
that the benefit from adaptive content selection is likely to be relatively modest in 
comparison to a well-designed, progressive CBT. We expected to see greater separa-
tion for the learners with low initial proficiency, but the relative gains between the 
two populations are similar. In general, these results suggest that a training effective-
ness/pilot study for this domain will be highly sensitive to the initial instructional 
design. Either more tailoring opportunities or more learning time may be needed to 
better separate adaptive and non-adapted learner populations. 

Fig. 4 summarizes exploration of trade offs between adaptive tailoring and the con-

tent available for adaptation. The figure contrasts projected learning outcomes under 
the same test conditions (other than available content) and uses the “very low” initial 
proficiency population as described for Fig. 3. The content options included in the 
figure are unlimited (content is available to match any proficiency profile) and a num-
ber of content choices: 2 choices (binary decision), 3-5 choices (small number of 
choices), and 10 choices (many choices). All choices were generated by sampling 
across the full spectrum of performance vectors. For example, for a 3 choice decision, 
one option would be generated for the “low”, “medium”, and “high” proficiency bias.  

The figure suggests adaptive content selection is not likely to have a significant 
positive impact on learning unless sufficient content is available. Even 3-5 choic-
es/decision were not sufficient to significantly improve learning. For continuing anal-
ysis, we plan to examine whether choices more localized to the typical learning pro-
gression (as reflected in the “progressive instructional design” in Fig. 3), could boost 

 
Fig. 3. Comparing Progressive (purple) & Tailored (blue) hypothesized learning trajectories 

for students with moderate a prior familiarity (dotted lines) and little familiarity (dashed). 



the performance of adaptive content selection without requiring a prohibitive number 
of content options. In general, the worst-case performance for adaptive selection 
should be to just choose the choice in the original instructional design, so these results 
are somewhat more pessimistic than would be the case in actual implementation.  

The final question was to attempt to quantify the accuracy of the underlying 
measures needed to enable adaptive tailoring. As shown in Fig. 2, we would like to 
use both explicit measures (e.g., a score from questions delivered after a lesson) as 
well as behavioral markers that provide (passive) indicators of learner state during 
learner activities in the CBT. Fig. 5 illustrates an initial assessment of the trade off 
inherent in using learner state measures to enable adaptive content selection. It pre-
sents learning curves obtained from a 95-70% range on measurement accuracy in 

 
Fig. 5. The potential effects of content availability on learning outcomes. 

 
Fig. 4. The potential effects of measure accuracy on learning outcomes. 



comparison to the learning curve obtained from perfect (100% accuracy) measures. 
Accuracy is computed as a normally distributed error around actual (ground-truth) 
levels of learner skill. It does not take into account compound errors across trials or 
reductions in measurement error with systematic, iterative measurement. 

In general, as the accuracy of the measure degrades, the system’s ability to narrow 
its tailoring to an individual learner’s ZPD degrades as well. As suggested by the 
figure, even a (relatively good) 80% accuracy results in a loss of much of the ad-
vantage of adaptive content selection. This result, combined with the analysis summa-
rized by Fig. 3, strongly suggests that adaptive content selection alone may not pro-
vide significant value for learning, given the limits of measurement accuracy, even if 
content requirement barriers could be mitigated (e.g., by some automatic content gen-
eration or content variation processes).  

6 Conclusions 

This paper illustrated an analytic approach to the design of adaptive training, enabling 
quantitative evaluation of design questions prior to commitments to implementation 
and pilot testing. In the illustrative example, analysis identified only marginal benefits 
of adaptive content selection in comparison to a well-designed learning environment. 
Further, realizing those small benefits requires unrealistic demands for accuracy in 
learner measurement and content creation. While these are somewhat negative results 
from of the point of view of advancing adaptive training, examples and tools support-
ing such analyses offer the potential to help researchers and practitioners set realistic 
expectations for learning system outcomes and to quantity component requirements 
within an adaptive training system to ensure minimum learning gains can be realized 
by an implemented system. 
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A. Introduction and Background 
Personalized learning, in which a learning environment adapts to the abilities, needs, and preferences of 
individual learners, has been identified as a "Grand Challenge" for 21st century research and engineering 
(National Academy of Engineering, 2008). The benefits of adaptive learning environments include more 
efficient learning (Woolf, 2008), improved attention and motivation (Craig et al., 2004), the development 
of less rigid and more flexible decision making (i.e., adaptive expertise, Hatano & Inagaki, 1986), and 
improved transfer of learning to settings in which learned knowledge is used and applied (Bransford & 
Schwartz, 1999; Coultas, Grossman, & Salas, 2012; Pan & Yang, 2010). Improved and personalized 
learning has particular application for more pervasive and less costly medical training, which often is 
delivered primarily by human instructors in classes with modest student-to-teacher ratios. Human 
instruction and mentoring is very valuable and desirable, but adaptive personalization methods offer an 
opportunity to deliver good, effective introductory and basic training, thus potentially enabling a single 
human instructor to train many more students by better preparing them for coaching and instruction from 
experts. 

Adaptation to a learner usually requires a model of the learner that is frequently updated as a learner 
progresses through a curriculum (Durlach & Spain, 2012). The targeting of adaptive techniques, such as 
scaffolding (Pea, 2004) and competency matching (Murray & Arroyo, 2002; Vygotsky, 1978), depends 
on the accuracy (and, to some degree, precision) of the learner model. When the model better reflects the 
learner's actual knowledge, skills, and attitudes at any point during the learning, the targeting of the 
adaptive method to the learner generally improves (Murray & Arroyo, 2002). 

Creating a complete and accurate learner model is difficult, however. In addition to estimating learner 
capability from formal and informal assessment within the environment (Anderson et al., 1995; 
Dillenbourg & Self, 1992; Durlach & Spain, 2012; Pardos et al., 2010), researchers have explored many 
behavioral, physiological, and even neurological indicators or "markers" that can provide additional 
context for estimating a learner's cognitive state and improving the dynamic assessment of the learner . 
For example, behavioral sensors (posture, eye trackers), physiological sensors (Galvanic skin response), 
and neurological sensors (EEG) have all been used to assess and track learner arousal/attention in learning 
environments (Cohn, Nicholson, & Schmorrow, 2008). Further, understanding the dynamic patterns of 
learner attention/arousal allows the identification of dynamic adaptation targeted to the identified arousal 
states (Cohn, Kruse, & Stripling, 2005). 

Such markers can be useful for improving a learner model, but most markers today require sensors that 
are not commonly available on the hardware available for typical computer-based learning: a laptop or a 
tablet. The primary goal of this study is to assess the role of behavioral markers that have the potential to 
improve learner modeling while also not requiring specialized hardware/sensors (i.e., using only hardware 
sensors found on typical computing devices). The study focuses specifically on behavioral markers that 
can be derived from 1) mouse movements and mouse selections (“clicks”) and 2) patterns of eye 
movements observable from a web camera (“passive eye tracking”).  

There is significant and growing scientific evidence that the temporal patterns of mouse movements 
during selection tasks can provide reliable insight into the cognitive state of subjects (Hehman, Stolier, & 
Freeman, 2015; Quétard et al., 2016). We anticipate, however, these markers to be noisier (less 
diagnostically precise) than neuro-cognitive markers associated with specialized sensors. Thus, this study 
focuses on evaluating the impact of the behavioral markers on the adaptive learning system to improve 
learning outcomes, given the noise and uncertainty of measure inherent in these unspecialized sources. 



Under this study, multiple hypotheses will be explored:  

• H1: There is a difference between conditions such that learning outcomes from the adaptive 
condition will exceed those from the non-adaptive condition. 

• H2: Mouse movements will be an indicator of learner focus on certain aspects of the learning 
environment. 

• H3: Eye movements will be an indicator of learner focus on certain aspects of the learning 
environment. 

• H4: Mouse and eye movements will be correlated. 

The proposed study is being funded by the United States Army Medical Research Acquisition Activity 
under the title Applied Cognitive Models of Behavior and Errors Patterns (Grant number W81XWH-16-
1-0460). 

B. Study Design 
In order to explore the hypotheses discussed in section A, a research study will be implemented which 
compares the results of learning between an adaptive medical learning unit to a unit presented in a non-
adaptive (fixed) sequence. Specifically, curriculum units will be developed for “Scene Size Up,” a 
required curriculum component used in Emergency Medical Technician (EMT) training (United States 
Department of Transportation & National Highway Traffic Safety Administration, 1996). These units 
(both adaptive and non-adaptive) will be presented to university subject population(s) in order to assess 
the utility of markers to improve adaptive learning in emergency medical environments. As discussed in 
section E, we will use multiple routes of recruitment, which will allow us to complete the study between 
July 1st, 2017 and January 31st, 2018. 

Specifically, the following variables of interest will be implemented and observed: 

• Instructional approach: The overall instructional approach of the learning environment. For this 
study, there are two distinct instructional approaches:  

o Non-adaptive/traditional: An instructional unit that is presented in a fixed sequence to 
all learners. 

o Adaptive based on performance (only): An instructional unit in which specific content 
presentations are constructed/chosen based on learner performance and subsequent 
estimates of learner knowledge and skill. 

o Adaptive based on performance and markers: An instructional unit that is 
dynamically constructed/chosen based on a combination of direct learner observation (as 
above) and behavior markers. 

• Markers: Patterns of observed behavior that are hypothesized to have a role in improving a 
learner model. 

• Knowledge gain: A measure of the post-test performance of subjects, relative to pre-test 
performance. 

This study will be implemented as a between-subjects design, with "instructional approach" being the 
independent variable of interest. Instructional approach will be manipulated at three levels (as discussed 
above): non-adaptive, adaptive based on performance (only) and adaptive based on performance and 
markers. To maintain the integrity of results, assignment will be randomized, with neither participants nor 
the experimenter being aware of assignment ahead of time. 



Primary Experimental Conditions 
Non-Adaptive (Standard Presentation) 
Adaptation (Performance) 
Adaptation (Performance and Markers) 

The primary dependent variable will be "knowledge gain", as measured by difference scores between pre- 
and post-tests given to participants. Additionally, the behavioral markers outlined in section A, derived 
from dynamic tracking of mouse movements and eye movements, will be used to predict learner needs 
and adapt the learning environment. The combination of these variables will enable the study to address 
the hypotheses above, as well as quantify the utility of the chosen adaptive learning models for improving 
learning in medical environments. 

C. Procedure 
The procedure implemented for participants in this study is expected to take between 45 and 75 minutes. 
Specific steps in the procedure are detailed chronologically below. 

1. Upon arrival, participants will read and sign the informed consent document. 
2. Once participants have indicated their consent, they will be randomly assigned one of the three 

experimental conditions. 
3. All participants will be given a standard demographics questionnaire (Appendix A) to assess their 

education level and familiarity (if any) with EMT training or medicine. 
4. All participants will receive a short 5-minute tutorial on how to use APACTS (see Appendix B). 
5. Passive eye tracking and mouse tracking mechanisms will be calibrated during the tutorial. 

Calibration includes the following standard practices:  
1. For eye tracking, adjustment of cameras and gaze calibration will be completed. This will 

require minimal activity from the participant, such as being asked to look around the 
screen (see Appendix B for example). 

2. For mouse tracking, calibration of the mouse will be completed. This will require 
minimal activity from the participant, such as being asked to move the mouse around the 
screen (see Appendix B for example). 

6. All participants will complete a pre-test, developed by the experimenters, which contains 
questions about the process of completing the scene size-up task as an EMT (see Appendix C). 

7. In their assigned condition, participants will learn how to complete a scene size-up, which will 
include the following standard practices for EMT training (see Appendix D for example content):  

1. Learning scene size-up terms and associated tasks. 
2. Viewing images of emergency scenes and reading text-based descriptions of the 

emergency scenes viewed. 
3. Viewing images of emergency scenes with opportunities to practice concepts learned, 

such as answering a question or labeling areas in a displayed image. 
8. During their completion of these conditions, passive eye tracking and mouse tracking will be 

engaged to collect participant data.  
1. In the adaptive conditions, results from passive eye tracking and mouse tracking will be 

used to change what content is presented to the learner, such as varying the difficulty of 
practice tasks, presenting feedback customized to a subject’s response, and/or repeating 
or amplifying previously presented information. 



2. In the non-adaptive condition, the content presentation will not differ; all subjects will 
receive the same information, with identical feedback and level of difficulty as all other 
subjects. 

9. During completion of conditions, participants will also receive questions tracking their sense of 
progress / self-efficacy in the domain.  

10. Participants will complete a post-test, which will be identical to the pre-test (Appendix C). 
11. Participants will be given an opportunity to give verbal feedback about the study before they 

leave. 

D. Inclusions / Exclusion Criteria 
The following inclusion/exclusion criterion will be adhered to and verified for each participant: 

• Must be 18+ years old  

The primary population of subjects will be college students, due to the source of recruitment (detailed in 
section E). College students represent a apt population for studying professional (in this case EMT) 
training, as they are pursuing professional endeavors that require similar training and learning practices. 
At the same time, the principle of distributive justice applies in this context, as college students represent 
a low risk population that can benefit from participation in research (through class credit or payment; see 
section E), and the study research is likewise low risk. 

E. Recruitment of Participants 
Primary Study Site: University of Alabama 

The primary source of participants is the University of Alabama. Participants will be recruited from the 
University of Alabama through 3 different methods: 

• Volunteers from University of Alabama's GBA300 classes, who are able to receive class credit 
for participation. 

• Volunteers from University of Alabama's research participant pools, including Psychology Sona 
and CCIS participant pool, which are used to grant class credits. 

• Paid participants recruited through flyers posted through University of Alabama's campus and on 
social media websites (see Appendix E). 

Recruitment will begin in August 2017, with flyers/announcements being posted in classes and listed in 
the participant pools (per above list). We will not be requesting a set number of participants from each 
source. Instead, participants will be recruited freely through the above methods until the required sample 
size is met (see section I). Recruitment will be performed by the sub-investigator on the project, who has 
CITI certification through completing the "Group 2: Social Behavioral and Education Research 
Investigators and Key Personnel" course. 

Secondary Study Site: Soar Technology, Inc. (Orlando Office) 

Some subjects, especially for initial system testing and pilot assessment, will be recruited from the 
University of Central Florida (UCF) and Research Park areas. These subjects will exclusively be paid 
participants recruited through flyers posted through UCF’s campus, Research Park (adjacent to UCF), as 



well as email and social media websites (see flyer in Appendix E). Recruitment will be coordinated by 
both the Principal Investigator (Wray) and the sub-investigator (Stowers). Both have CITI certification. 
Subjects recruited at UCF will complete the study at the Orlando offices of Soar Technology, which is 
located in Research Park. An office will be dedicated for data collection at Soar Technology. 

F. Consent Process and Timing 
Consent will be obtained upon participant arrival to the research site. Before beginning the study, 
participants will be given a copy of the informed consent to read (the consent form will be developed by 
E&I for this study and thus is not attached to this submission). The experimenter will also explain the 
consent to them verbally. Participants will be given as much time as they need to consider participation 
and will consent verbally, as well as through written signature, before proceeding with the study.  

The consent process will be performed the PI, the sub investigator and research assistants. All 
experimenters will have CITI "Group 2: Social Behavioral and Education Research Investigators and Key 
Personnel" certification. 

 G. Risks, Discomforts, and Benefits to Subjects 
Minimization of Risks 

Due to the nature of content used in the study, participants may find some of the images in the study 
disturbing (accident victims). These risks will be minimized through the use of images that minimize the 
visible presentation of injuries. 

Maximization of Benefits 

Participants will learn how to assess a medical emergency, and may find that learning process intrinsically 
rewarding. Benefits will be maximized through the use of practice rounds, as well as pre-tests and post-
tests, where participants will be able to demonstrate their success in learning the content presented. 

Provisions to protect the privacy of participants: 

Privacy of Participants and Confidentiality of Data 

Participant information will only be identified through assigned identification numbers. Through the use 
of the identification numbers, the data will be fully anonymous. Information connecting identification 
numbers with any personally identifiable information will be held in a separate location from other data 
collected and stored on a password protected computer. Only those involved in the study will have access 
to any information or data linked to the study. 

Data Storage 

Data will be stored for 5 years, according to guidelines by CITI. Data will be stored on a password-
protected computer at all times and only the principal investigator and sub-investigator will have access to 
individual data. 



H. Financial Considerations 
Participants will be compensated $15 for participation via a credit-card gift card. Compensation will be 
provided at the end of the experimental session. Participants are not expected to incur any costs to 
themselves as a result of participation. If any research related injuries are discovered, the principal 
investigator and IRB will be notified immediately, as well as the University of Alabama's counseling and 
medical centers. Participants will have direct access to health care and counseling as needed. 

I. Data Analysis and Statistical Analysis 
As this study involves a single independent variable with just three levels, the primary analysis will be an 
F test comparing the difference scores of pre- and post-tests in each condition. Additionally, correlations 
will be calculated in order to gain an understanding of the relationship between behavioral markers and 
performance outcomes. A power analysis was run (using GPower 3.1) based on the following criteria: 

• F test (one-way ANOVA) 
• Effect size (f): 0.4 
• Error probability (alpha): 0.05 
• Power (1 - beta error probability): 0.85 
• Number of groups: 3 

According to the parameters entered and calculations made using GPower, we will need to analyze data 
from 72 participants to achieve optimal power. In order to account for participant withdrawal, as well as 
any issues encountered with eye tracking or mouse tracking that may cause data to be unusable (e.g., an 
adaptive condition in which mouse tracking did not function), we will collect data from up to 100 
participants. 

Analyses of participant data will be broken up into the following steps, the final step marking the 
endpoint of the study: 

1. Coding and cleaning mouse-tracking and eye-tracking data 
2. Calculating difference scores for pre- and post-tests 
3. Calculating t-test and correlations 
4. Reporting results through technical reports and publications 

Our expectation is that all primary data analysis will be concluded by April 30, 2018. However, as data 
will be kept up to 5 years past the end of collection (see section G), we expect to also analyze 
depersonalized data on an ongoing basis. In particular, we will data captured from eye tracking and mouse 
tracking to inform further development and refinement of the markers tested in this study. For example, 
we are focusing a single mouse-tracking algorithm for use in the study. After the study is completed, we 
can perform post-hoc analysis with participant mouse tracking data to evaluate alternative mouse tracking 
algorithms and possible pattern-based selection of algorithms for future studies. Thus, the data resulting 
from this experiment will support subsequent research and improvement of adaptive learning methods 
and tools.  
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Appendix A 
Demographics Questionnaire 

1. How old are you? 

 __ (Fill in the blank) 

2. Are you male or female? 

 male 

 female 

 other 

3. What is your education level? 

 Graduated high school 

 Completed some college coursework 

 Completed Associate's degree 

 Completed Bachelor's degree 

 Completed Master's degree 

 Completed Doctoral degree 

 Other (please explain)  
o __ (fill in blank) 

4. What is your major of study? 

 __ (Fill in the blank) 

5. Do you have any training or experience as an emergency medical technician or related service? 

 Yes 

 No 

6. Do you have any formal training in first-aid procedures (such as a CPR course or training as a 
lifeguard)? 

 Yes 

 No 

7. If yes to Question 5 or 6, please sketch some details (what training, when, etc.). 

 __ (Fill in the blank) 

  

  

  



Appendix	B	

Environment	Tutorial	&	Calibra7on	

Standard	tutorial	introduc7on	to	the	instruc7onal	content	delivery	system	(APACTS)		



APACTS	supports	embedded	videos	

The	“Coach”	is	used	to	provide	direc7ons,	amplifying	informa7on,	addi7onal	explana7on,	etc.	



Introducing	a	“choice	frame”	(mul7ple	choice	ques7ons)	

Introducing	annota7on	frames	(tag	loca7ons	within	an	image)	



Choice	frames	can	include	images	and	text.	

An	alterna7ve	annota7on	frame	



The	tutorial	will	include	simple	calibra7on	paIerns	for	eye	and	mouse	movements	
(This	image	shows	the	underlying	calibra7on	paIern.)	

The	actual	calibra7on	task	will	be	1)	to	fixate	on	a	series	of	screen	loca7ons	based	on	paIern,	…	



And	2)	to	move	the	mouse	to	a	subsequence	series	of	screen	loca7ons.	



Appendix C. Pre-Test/Post-Test Example Questions 
Subjects will complete a pre-test and post-test as part of the study. The pre-test and post-test will both be 
administered within the computer-based learning environment in which learning content is delivered (see 
Appendix D for specific examples of how questions are delivered within the system). 

The pre-test and post-test will be identical and will not include any adaptive choices (the specific 
questions and their order will be fixed for all subjects/experimental conditions).  

Below, we provide examples of the pre-/post-test questions for the study. 

Basic Conceptual Knowledge 

1. Which of the following best expresses the definition of mechanism of injury (MOI)? 
(a) The types of injuries observed for particular kinds of accidents 
(b) The immediate cause(s) of an injury that results from an accident 
(c) Mechanical failures in a vehicle (e.g., a blow out) that result in accident and injury 
(d) Action(s) that lead to accident and injury (failure to yield) 
(e) Both (c) and (d) 

 
2. Which option best describes when scene size-up should be undertaken? 

(a) As soon as possible after arrival, but after immediate patient triage 
(b) During transit to the accident location, as provided by emergency personnel on scene via radio (or 

similar) 
(c) Immediately on arrival 
(d) After hazards have been assessed and bystanders moved away from hazards 
(e) Both (a) and (d) 

 
3. What patterns of injuries are associated with side-impact collisions? 

(a) Head and neck injuries 
(b) Knee, hip, and leg injuries 
(c) Direct, blunt trauma 
(d) Broken arms and ribs 
(e) Both (a) and (b) 
(f) Both (a) and (c) 
(g) (a), (b) and (c) 

 
4. What pattern(s) of injury are most associated with the “Down and Under” mechanism of injury? 

(a) Head and neck injuries 
(b) Knee, hip, and leg injuries 
(c) Direct, blunt trauma 
(d) Broken arms and ribs 
(e) Both (a) and (b) 
(f) Both (a) and (c) 

 
4. What pattern(s) of injury are most associated with a roll over mechanism of injury? 

(a) Head and neck injuries 
(b) Knee, hip, and leg injuries 
(c) Direct, blunt trauma 



(d) Broken arms and ribs 
(e) Both (a) and (b) 
(f) Both (a) and (c) 
(g) All of the above 

 
In addition to general knowledge questions, the pre- and post-test will include questions that present an 
image of an accident and ask the subject to evaluate the situation (size up the scene) in accordance with 
materials presented in the learning unit. These questions will be similar to the assessment and feedback 
questions that are used within the learning environment (i.e., as summarized in Appendix D).  
 
Examples: 
 
Application to a specific situation (multiple choice) 

 
 
 
Application to a specific situation (labeling/annotation) 
 

 
 
 



Appendix	D	

Example	Content	from	the		
Learning	Environment	

Introductory	instruc<onal	material	



Objec<ves	of	the	unit	of	study.	Clicking	on	the	“coach”	will	bring	up	amplifying	or	summary	
statements.	

More	detailed	lesson	material.	



Opportunity	to	an<cipate	and	consider	more	detailed	explana<on.	



“Check	your	knowledge”	ques<ons.	Responses	to	these	ques<ons	are	used	to	update	the	
learner	model	and	influence	subsequent	content	choices.	

Simulated	user	response…	



User	receives	feedback	based	on	their	response	(both	traffic	and	
debris	are	hazards	in	the	image).	

Examples	of	more	detailed/technical	knowledge	introduced	in	the	study.	



Another	“check	your	knowledge”	ques<on.	



This	is	an	example	of	a	more	challenging	
ques<on	for	a	similar	instruc<onal	context.		



Adapta<on	can	also	include	the	choice	of	images	with	more/less	challenging	perceptual	
content.	The	dog	(poten<al	hazard)	is	easier	to	perceive	in	this	image	than	the	following	one.	



Subjects	can	also	be	asked	to	iden<fy	specific	areas	on	an	image	corresponding	to	an	
instruc<onal	concept	(in	this	case,	iden<fying	hazards).	





Appendix	E	
Recruitment	Flyer	
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